Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Permeation of H2, N2, CH4, C2H6, and C3H8 through asymmetric polyetherimide hollow‐fiber membranes

Identifieur interne : 001770 ( Main/Exploration ); précédent : 001769; suivant : 001771

Permeation of H2, N2, CH4, C2H6, and C3H8 through asymmetric polyetherimide hollow‐fiber membranes

Auteurs : Dongliang Wang [Singapour] ; W. K. Teo [Singapour] ; K. Li [Royaume-Uni]

Source :

RBID : ISTEX:B422F874ADF3C61B45D4099222E66DE9E5A13A7A

English descriptors

Abstract

Permeation properties of pure H2, N2, CH4, C2H6, and C3H8 through asymmetric polyetherimide (PEI) hollow‐fiber membranes were studied as a function of pressure and temperature. The PEI asymmetric hollow‐fiber membrane was spun from a N‐methyl‐2‐pyrrolidone/ethanol solvent system via a dry‐wet phase‐inversion method, with water as the external coagulant and 50 wt % ethanol in water as the internal coagulant. The prepared asymmetric membrane exhibited sufficiently high selectivity (H2/N2 selectivity >50 at 25°C). H2 permeation through the PEI hollow fiber was dominated by the solution‐diffusion mechanism in the nonporous part. For CH4 and N2, the transport mechanism for gas permeation was a combination of Knudsen flow and viscous flow in the porous part and solution diffusion in the nonporous part. In our analysis, operating pressure had little effect on the permeation of H2, CH4, and N2. For C2H6 and C3H8, however, capillary condensation may have occurred at higher pressures, resulting in an increase in gas permeability. As far as the effect of operating temperature was concerned, H2 permeability increased greatly with increasing temperature. Meanwhile, a slight permeability increment with increasing temperature was noted for N2 and CH4, whereas the permeability of C2H6 and C3H8 decreased with increasing temperature. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 698–702, 2002

Url:
DOI: 10.1002/app.10966


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Permeation of H2, N2, CH4, C2H6, and C3H8 through asymmetric polyetherimide hollow‐fiber membranes</title>
<author>
<name sortKey="Wang, Dongliang" sort="Wang, Dongliang" uniqKey="Wang D" first="Dongliang" last="Wang">Dongliang Wang</name>
</author>
<author>
<name sortKey="Teo, W K" sort="Teo, W K" uniqKey="Teo W" first="W. K." last="Teo">W. K. Teo</name>
</author>
<author>
<name sortKey="Li, K" sort="Li, K" uniqKey="Li K" first="K." last="Li">K. Li</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:B422F874ADF3C61B45D4099222E66DE9E5A13A7A</idno>
<date when="2002" year="2002">2002</date>
<idno type="doi">10.1002/app.10966</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-VS28ZWX7-5/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000A09</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000A09</idno>
<idno type="wicri:Area/Istex/Curation">000A09</idno>
<idno type="wicri:Area/Istex/Checkpoint">000617</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000617</idno>
<idno type="wicri:doubleKey">0021-8995:2002:Wang D:permeation:of:h</idno>
<idno type="wicri:Area/Main/Merge">001808</idno>
<idno type="wicri:Area/Main/Curation">001770</idno>
<idno type="wicri:Area/Main/Exploration">001770</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Permeation of H2, N2, CH4, C2H6, and C3H8 through asymmetric polyetherimide hollow‐fiber membranes</title>
<author>
<name sortKey="Wang, Dongliang" sort="Wang, Dongliang" uniqKey="Wang D" first="Dongliang" last="Wang">Dongliang Wang</name>
<affiliation wicri:level="4">
<orgName type="university">Université nationale de Singapour</orgName>
<country>Singapour</country>
</affiliation>
<affiliation></affiliation>
</author>
<author>
<name sortKey="Teo, W K" sort="Teo, W K" uniqKey="Teo W" first="W. K." last="Teo">W. K. Teo</name>
<affiliation wicri:level="4">
<orgName type="university">Université nationale de Singapour</orgName>
<country>Singapour</country>
</affiliation>
</author>
<author>
<name sortKey="Li, K" sort="Li, K" uniqKey="Li K" first="K." last="Li">K. Li</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Chemical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY</wicri:regionArea>
<wicri:noRegion>BA2 7AY</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Royaume-Uni</country>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr" wicri:curation="lc">Royaume-Uni</country>
<wicri:regionArea>Correspondence address: Department of Chemical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY</wicri:regionArea>
<wicri:noRegion>BA2 7AY</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Applied Polymer Science</title>
<title level="j" type="alt">JOURNAL OF APPLIED POLYMER SCIENCE</title>
<idno type="ISSN">0021-8995</idno>
<idno type="eISSN">1097-4628</idno>
<imprint>
<biblScope unit="vol">86</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="698">698</biblScope>
<biblScope unit="page" to="702">702</biblScope>
<biblScope unit="page-count">5</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>New York</pubPlace>
<date type="published" when="2002-10-17">2002-10-17</date>
</imprint>
<idno type="ISSN">0021-8995</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0021-8995</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Asymmetric</term>
<term>Asymmetric membrane</term>
<term>Asymmetric membranes</term>
<term>Bers</term>
<term>Capillary condensation</term>
<term>Capillary pressure</term>
<term>Dense membrane</term>
<term>High selectivity selectivity</term>
<term>Higher pressures</term>
<term>Higher selectivity</term>
<term>Hydrocarbon condensation</term>
<term>Increment</term>
<term>Inner diameter</term>
<term>Internal coagulant</term>
<term>Knudsen</term>
<term>Little effect</term>
<term>Membr</term>
<term>Membrane</term>
<term>Membrane selectivity</term>
<term>Nonporous</term>
<term>Nonporous part</term>
<term>Permeability</term>
<term>Permeability increment</term>
<term>Permeation</term>
<term>Permeation behavior</term>
<term>Permeation properties</term>
<term>Permeation rate</term>
<term>Polymer</term>
<term>Polymeric membranes</term>
<term>Pore</term>
<term>Pore length</term>
<term>Pore size</term>
<term>Porous part</term>
<term>Pressure difference</term>
<term>Pure gases</term>
<term>Schematic diagram</term>
<term>Selectivity</term>
<term>Small fraction</term>
<term>Surface porosity</term>
<term>Test module</term>
<term>Theoretical analysis</term>
<term>Viscous</term>
<term>Wiley periodicals</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Permeation properties of pure H2, N2, CH4, C2H6, and C3H8 through asymmetric polyetherimide (PEI) hollow‐fiber membranes were studied as a function of pressure and temperature. The PEI asymmetric hollow‐fiber membrane was spun from a N‐methyl‐2‐pyrrolidone/ethanol solvent system via a dry‐wet phase‐inversion method, with water as the external coagulant and 50 wt % ethanol in water as the internal coagulant. The prepared asymmetric membrane exhibited sufficiently high selectivity (H2/N2 selectivity >50 at 25°C). H2 permeation through the PEI hollow fiber was dominated by the solution‐diffusion mechanism in the nonporous part. For CH4 and N2, the transport mechanism for gas permeation was a combination of Knudsen flow and viscous flow in the porous part and solution diffusion in the nonporous part. In our analysis, operating pressure had little effect on the permeation of H2, CH4, and N2. For C2H6 and C3H8, however, capillary condensation may have occurred at higher pressures, resulting in an increase in gas permeability. As far as the effect of operating temperature was concerned, H2 permeability increased greatly with increasing temperature. Meanwhile, a slight permeability increment with increasing temperature was noted for N2 and CH4, whereas the permeability of C2H6 and C3H8 decreased with increasing temperature. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 698–702, 2002</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
<li>Singapour</li>
</country>
<orgName>
<li>Université nationale de Singapour</li>
</orgName>
</list>
<tree>
<country name="Singapour">
<noRegion>
<name sortKey="Wang, Dongliang" sort="Wang, Dongliang" uniqKey="Wang D" first="Dongliang" last="Wang">Dongliang Wang</name>
</noRegion>
<name sortKey="Teo, W K" sort="Teo, W K" uniqKey="Teo W" first="W. K." last="Teo">W. K. Teo</name>
</country>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Li, K" sort="Li, K" uniqKey="Li K" first="K." last="Li">K. Li</name>
</noRegion>
<name sortKey="Li, K" sort="Li, K" uniqKey="Li K" first="K." last="Li">K. Li</name>
<name sortKey="Li, K" sort="Li, K" uniqKey="Li K" first="K." last="Li">K. Li</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001770 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001770 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:B422F874ADF3C61B45D4099222E66DE9E5A13A7A
   |texte=   Permeation of H2, N2, CH4, C2H6, and C3H8 through asymmetric polyetherimide hollow‐fiber membranes
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021